
Chapter 1 Two Proofs of the infinitude of Primes 2018-19

v1 [3 lectures]

One method to show there are infinitely many primes is to start with a
sequence {an}n≥1 of real numbers such that an 6= 0 if n is prime and an = 0
if n is not prime, i.e. composite. If

∑

n≤N an → ∞ as N → ∞ then there
must be infinitely many primes. Thus we are led to estimating sums and
a fundamental idea is to replace the sum by an integral. One way this is
achieved is by applying the important idea that, for an integrable function
f,

glb
[a,b]

f(t) (b− a) ≤

∫ b

a

f(t) dt ≤ lub
[a,b]

f(t) (b− a) . (1)

With [a, b] = [n, n+1], n ∈ Z, this gives

glb
[n,n+1]

f(t) ≤

∫ n+1

n

f(t) dt ≤ lub
[n,n+1]

f(t) .

If f is decreasing then glb[n,n+1]f(t) = f(n+1) while lub[n,n+1]f(t) = f(n)
and we get

f(n+1) ≤

∫ n+1

n

f(t) dt ≤ f(n) . (2)

Lemma 1.1 For all integers N ≥ 1,

∫ N+1

1

f(t) dt ≤
N
∑

n=1

f(n) ≤ f (1) +

∫ N

1

f(t) dt. (3)

Proof For the lower bound in (3) sum the upper inequality in (2) over
n = 1, ..., N. For the upper bound in (3) sum the lower inequality in (2) over
n = 1, ..., N−1 and then change the variable of summation from n to n+1,
though still calling it n. �

1.2 First Proof

Corollary 1.2 The sum over the reciprocal of integers n satisfies

log (N + 1) ≤
∑

1≤n≤N

1

n
≤ logN + 1.
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Proof This follows immediately from Lemma 1.1 with f (t) = 1/t. �

For our proof of the infinitude of primes we will require the following
lemma. Recall that the Taylor Series for − log (1− x) is

x+
x2

2
+

x3

3
+

x4

4
+ ...

for |x| < 1. Thus we might expect x to be a good first approximation to
− log (1− x). The following result quantifies how good an approximation.

Lemma 1.3 For 0 < x < 1 we have

0 < − log (1− x)− x <
x2

(1− x)
.

Proof For 0 < x < 1 we have

− log (1− x) =

∫ 1

1−x

dt

t
.

As seen in (1)

glb
[a,b]

f(t) (b− a) ≤

∫ b

a

f(t) dt ≤ lub
[a,b]

f(t) (b− a) .

In the present case this gives

x <

∫ 1

1−x

dt

t
<

x

1− x
,

i.e.
x < − log (1− x) <

x

1− x
,

Hence

0 < − log (1− x)− x <
x

1− x
− x =

x2

1− x
.

�

Theorem 1.4 The sum over the reciprocals of primes p satisfies

∑

p≤N

1

p
> log log (N + 1)− 1

for N ≥ 2.
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Letting N → ∞ proves that the series
∑

p 1/p diverges which it can only
do if it contains a infinite number of terms, i.e. we have an infinitude of
primes.

Proof Let
N = {n ∈ N : p|n ⇒ p ≤ N} .

Note that 1 ∈ N since there are no primes which divide 1 and so the condition
is trivially satisfied.

Another way of writing N is to list all the primes up to N as p1 < p2 <
... < pr ≤ N . By the prime factorisation of integers every n ∈ N can
be written as pa11 pa22 ...parr for some ai ≥ 0 ∀ 1≤ i≤ r while, conversely, every
product pa11 pa22 ...parr with ai ≥ 0 is an element of N . Hence

N = {pa11 pa22 ...parr : ai ≥ 0 ∀ 1≤ i≤r} .

Next by unique factorisation into prime there is no n ∈ N which is
represented by two different products pa11 pa22 ...parr . Thus we get the first
equality in

∑

n∈N

1

n
=

∑

ai≥0 1≤ i≤ r

1

pa11 pa22 ...parr

=
r

∏

i=1

(

1 +
1

pi
+

1

p2i
+

1

p3i
+ ...

)

(4)

To see this last equality multiply the product out, taking from each
bracket a term of the form 1/paii for some ai ≥ 0. Multiplying them together
gives a term of the form

r
∏

i=1

1

paii
=

1
∏r

i=1 p
ai
i

=
1

n
,

with n ∈ N .

The result (4) can be written more succinctly as

∑

n∈N

1

n
=

∏

p≤N

(

1 +
1

p
+

1

p2
+

1

p3
+ ...

)

. (5)

This IMPORTANT RESULT encapsulates the unique factorization of

integers. Next each sum in a bracket in (5) is a geometric series and can be
summed to

1

1− 1/p
=

(

1−
1

p

)−1

.
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Thus
∑

n∈N

1

n
=

∏

p≤N

(

1−
1

p

)−1

. (6)

Importantly If n ≤ N then all prime divisors p of n satisfy p ≤ n ≤ N thus
n ∈ N . That is,

n ≤ N =⇒ n ∈ N or, equivalently, N ⊇ {1 ≤ n ≤ N} .

Hence
∑

n≤N

1

n
≤

∑

n∈N

1

n
. (7)

Therefore, combining (6), (7) and Corollary 1.2 we obtain

log (N + 1) ≤
∏

p≤N

(

1−
1

p

)−1

.

Take logarithms to get

log log (N + 1) ≤
∑

p≤N

− log

(

1−
1

p

)

. (8)

After Lemma 1.3 above we might consider 1/p a good approximation to
− log (1− 1/p). For this reason we write

∑

p≤N

− log

(

1−
1

p

)

=
∑

p≤N

1

p
+

∑

p≤N

(

− log

(

1−
1

p

)

−
1

p

)

. (9)

Apply Lemma 1.3 with x = 1/p which is ≤ 1/2 since primes satisfy p ≥ 2.
Then

0 < − log

(

1−
1

p

)

−
1

p
<

(1/p)2

1− 1/p
=

1

p (p− 1)
.

So

0 <
∑

p≤N

(

− log

(

1−
1

p

)

−
1

p

)

<
∑

p≤N

1

p (p− 1)
<

∑

2≤n≤N

1

n (n− 1)
,

replacing the sum over primes by a larger sum over all integers. Note how
this latter sum starts at n = 2 and not 1, because the smallest prime is 2.
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Continue using partial fractions

∑

2≤n≤N

1

n (n− 1)
=

∑

2≤n≤N

(

1

n− 1
−

1

n

)

=

(

1

1
−

1

2

)

+

(

1

2
−

1

3

)

+

(

1

3
−

1

4

)

+ ...

...+

(

1

N − 2
−

1

N − 1

)

+

(

1

N − 1
−

1

N

)

= 1−
1

N
, by cancellation,

< 1. (10)

We say that the sum has “telescoped down”, the second term in a bracket
cancelling the first term in the next. Thus

0 <
∑

p≤N

(

− log

(

1−
1

p

)

−
1

p

)

< 1.

Putting this into (9) we find that

∑

p≤N

− log

(

1−
1

p

)

<
∑

p≤N

1

p
+ 1.

By (8) we get

log log (N + 1) <
∑

p≤N

1

p
+ 1,

which rearranges to

∑

p≤N

1

p
> log log (N + 1)− 1,

as required. �

1.3 The Riemann zeta function

The First Proof of the infinitude of primes was straightforward since we only
consider finite products (over p ≤ N) and related finite sums (over n ≤ N)
to finite integrals. In the next proof we have infinite products and relate
infinite sums to infinite integrals.
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Definition 1.5 The Riemann zeta-function is defined by

ζ(s) =
∞
∑

n=1

1

ns

for all s ∈ C for which the series converges.

For s ∈ C it is standard in this subject area to use the notation s = σ+it,
with σ, t ∈ R. (Strange to be mixing Greek, σ, with Roman, t, but blame
Riemann and his 1859 paper.)

Note that ns = nσ+it. Here nit = eit logn. Yet
∣

∣eiθ
∣

∣ = 1 for all θ so
∣

∣eit logn
∣

∣ = 1
for all n ≥ 1 and thus

|ns| =
∣

∣nσ+it
∣

∣ = |nσ|
∣

∣eit logn
∣

∣ = nσ.

Example 1.6

ζ(2) =
∞
∑

n=1

1

n2

is known to converge.

It can be shown, i.e. by Complex Analysis or Fourier Series, that

∞
∑

n=1

1

n2
=

π2

6
,

and this result will be used throughout the course with no further comment.

For s ∈ R, i.e. a real variable we have

Theorem 1.7 For s = σ real, the series defining ζ(σ) diverges for all σ ≤ 1
and converges for all σ > 1 with

1

σ − 1
≤ ζ(σ) ≤

1

σ − 1
+ 1.
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Proof If σ ≤ 0 then the terms of the series defining ζ(σ) satisfy 1/nσ > 1, in
particular they do not tend to 0 as n → ∞ and so the series cannot converge,
i.e. it diverges.

Assume σ > 0. Lemma 1.1 with f (u) = 1/uσ gives

∫ N+1

1

du

uσ
≤

N
∑

n=1

1

nσ
≤ 1 +

∫ N

1

du

uσ
,

for all N ≥ 1. Thus

1

1− σ

(

(N + 1)1−σ − 1
)

≤
N
∑

n=1

1

nσ
≤ 1 +

1

1− σ

(

N1−σ − 1
)

, (11)

for σ 6= 1.

First Case 0 < σ ≤ 1. If σ = 1 then, since by Corollary 1.2,
∑

n≤N 1/N >
log (N + 1) which tends to ∞ as N → ∞, we deduce that

∑∞
n=1 1/n diverges.

If 0 < σ < 1 then 1 − σ > 0 and so (N + 1)1−σ → ∞ as N → ∞. Then
the left hand inequality of (11) shows that the partial sums of

∑∞
n=1 1/n

σ

diverge, and so the infinite sum diverges.

Second case σ > 1. Simplify the second inequality in (11) as

N
∑

1

1

nσ
≤ 1 +

1

σ − 1

(

1−N1−σ
)

≤ 1 +
1

σ − 1
,

using N > 0. Then the sequence of partial sums
∑

n≤N 1/nσ is an increasing
sequence (positive terms 1/nσ are added as N increases) bounded above.
Thus, by a first year analysis result, the sequence of partial sums converges,
which is the definition that the series ζ(σ) converges. Also

ζ(σ) ≤ 1−
1

1− σ
. (12)

Next, 1− σ < 0 so (N + 1)1−σ → 0 as N → ∞. So, in the limit, the first
inequality in (11) gives

ζ(σ) ≥ −
1

1− σ
=

1

σ − 1
. (13)

Combine (12) and (13) to give the displayed conclusion. �

Note that for complex s = σ + it Theorem 1.7 says that ζ(s) converges
absolutely for Re s > 1 because, for such s,
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∞
∑

n=1

∣

∣

∣

∣

1

ns

∣

∣

∣

∣

=
∞
∑

n=1

1

nσ
= ζ(σ) .

But if s = σ + it with 0 < σ ≤ 1 and t 6= 0, the Theorem does not tell us
that ζ(s) diverges. We will have to wait until later in the course to see that
this is the case.

1.4 Infinite Products

Definition 1.8 Let {un}n≥1 be a sequence of complex numbers. Let pn =

u1u2...un for each n.
If the sequence of partial products {pn}n≥1 converges to a non-zero limit

p say, as n → ∞, we say that the infinite product
∏∞

r=1 ur converges to p.

If a finite number of the factors un equal 0 and the infinite product ob-
tained by removing these factors converges we say that the infinite product
∏∞

r=1 ur converges to 0.

Otherwise we say that the product is divergent.

Thus a convergent infinite product is zero if at least one of its factors is
zero.

Assumption If {un}n≥1 contains a finite number of zeros these are removed
and the remaining terms relabeled. That is we are assuming un 6= 0 for all
n. This means we are only considering infinite products that converge to a
non-zero value.

I will assume without proof the two results.

Unproved Result 1 If
∏∞

n=1 un converges, then the product of inverses,
∏∞

n=1 u
−1
n , converges.

Unproved Result 2 If the series
∑∞

n=1 |an| is convergent (where the an

are real or complex and an 6= −1 for all n, then the infinite product
∏∞

n=1 (1 + an) converges in that the limit

lim
N→∞

N
∏

n=1

(1 + an)

exists and is non-zero.

This will be applied in examples where the an are zero when n is non-
prime. We are then assuming that if

∑

p |ap| is convergent then
∏

p (1 + ap)
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is convergent.

Proofs of both results can be found in Appendix C of The Prime Number
Theorem by G.J.O. Jameson, Pub. London Mathematical Society, Student
Text 13, 2003. It can also be found in the Appendix on my web site.

For s ∈ C, i.e. a complex variable, we have

Example 1.9 For Re s > 1 the infinite product

∏

p

(

1−
1

ps

)−1

converges and is non-zero.

Solution Assume Re s > 1. Use again the fact that an infinite series over
primes of positive terms is less than the series over all integers, i.e.

∑

p

∣

∣

∣

∣

−
1

ps

∣

∣

∣

∣

=
∑

p

1

pσ
≤

∞
∑

n=1

1

nσ
= ζ(σ) .

Thus the series
∑

p |−1/ps| converges and so, by our Result 2 above, the
infinite product

∏

p

(

1 +

(

−
1

ps

))

is convergent for Re s > 1. Then, by the Result 1,

∏

p

(

1−
1

ps

)−1

converges. �

For real s > 1 this result is due to L. Euler, 1737, and for this reason:

Definition 1.10 Infinite products over primes are known as Euler Prod-

ucts.
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The product seen in Example 1.9 is often referred to as the Euler Product
because of

Theorem 1.11 For complex s satisfying Re s > 1

ζ(s) =
∏

p

(

1−
1

ps

)−1

.

Proof Let N > 1 and N as seen in the proof of Theorem 1.4. The exponent
of s makes no differences to the arguments seen in the proof of Theorem 1.4
and so, by the unique factorization of integers, we have

∏

p≤N

(

1−
1

ps

)−1

=
∑

n∈N

1

ns
.

Consider
∣

∣

∣

∣

∣

ζ(s)−
∏

p≤N

(

1−
1

ps

)−1
∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∞
∑

n=1

1

ns
−

∑

n∈N

1

ns

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

n/∈N

1

ns

∣

∣

∣

∣

∣

.

Next we will take the modulus into the series, allowable since the resulting
series is convergent as the subsequent argument will show. Thus

∣

∣

∣

∣

∣

∑

n/∈N

1

ns

∣

∣

∣

∣

∣

≤
∑

n/∈N

∣

∣

∣

∣

1

ns

∣

∣

∣

∣

=
∑

n/∈N

1

nσ
.

Recalling N ⊇{1, 2, ..., N} we see that n /∈ N implies n ≥ N + 1. Hence

∑

n/∈N

1

nσ
≤

∑

n≥N+1

1

nσ

≤
∑

n≥N+1

∫ n

n−1

du

uσ
=

∫ ∞

N

du

uσ
=

1

(σ − 1)Nσ−1
.

Therefore
∣

∣

∣

∣

∣

ζ(s)−
∏

p≤N

(

1−
1

ps

)−1
∣

∣

∣

∣

∣

≤
1

(σ − 1)Nσ−1
.

Let N → ∞ when the bound here tends to 0 since σ > 1. This means we
have again shown that the infinite product converges but now we know the
limit is ζ(s). �
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Corollary 1.12 For Re s > 1

ζ(s) 6= 0.

Proof From Example 1.9 we see that the Euler product for ζ(s) converges
which means by definition of convergence for infinite products that the Euler
product is non-zero. Thus by Theorem 1.11 we have ζ(s) 6= 0 for Re s > 1.

�

An advert for a substantial part of this course is that we will later prove
ζ(s) 6= 0 for Re s ≥ 1. This may not look much of an improvement but the
fact that ζ(s) 6= 0 for Re s = 1 is equivalent to the Prime Number Theorem,
another major result of this course.

1.5 Second Proof

We now come to the promised second proof of the infinitude of primes which
is by way of giving a lower bound on the infinite series

∑

p 1/p
σ.

Theorem 1.13 For real σ > 1

∑

p

1

pσ
≥ log

(

1

σ − 1

)

− 1.

Letting σ → 1+ the right hand side diverges and so the limit as σ → 1+ of
the sum over primes must be infinite. If there were only finite many primes
then the limit of the finite sum would be finite, contradiction. Hence there
must be infinitely many primes.

Proof Recall that n ≤ N ⇒ n ∈ N , so

∑

1≤n≤N

1

nσ
≤

∑

n∈N

1

nσ
=

∏

p≤N

(

1−
1

pσ

)−1

,

as seen in the previous proof for complex s in place of the real σ. Take
logarithms,

log

(

∑

1≤n≤N

1

nσ

)

≤ log
∏

p≤N

(

1−
1

pσ

)−1

=
∑

p≤N

− log

(

1−
1

pσ

)

=
∑

p≤N

1

pσ
+

∑

p≤N

(

− log

(

1−
1

pσ

)

−
1

pσ

)

. (14)
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By Lemma 1.3 with x = 1/pσ we have

0 ≤
∑

p≤N

(

− log

(

1−
1

pσ

)

−
1

pσ

)

≤
∑

p≤N

1

pσ (pσ − 1)

≤
N
∑

n=2

1

nσ (nσ − 1)
≤

N
∑

n=2

1

n (n− 1)
since σ > 1

≤ 1,

for all N ≥ 1, as seen in an earlier proof. Hence the sum over primes
converges and

0 ≤
∑

p

(

− log

(

1−
1

pσ

)

−
1

pσ

)

≤ 1. (15)

Let N → ∞ in (14) . On the left hand side the continuity of log gives

lim
N→∞

log

(

∑

1≤n≤N

1

nσ

)

= log

(

lim
N→∞

∑

1≤n≤N

1

nσ

)

= log ζ(σ)

for σ > 1. Rearranging (14) gives

lim
N→∞

∑

p≤N

1

pσ
= log ζ(σ)−

∑

p

(

− log

(

1−
1

pσ

)

−
1

pσ

)

.

That is, the sum over primes converges, and the lower bound in the Theorem
follows from (15) and Theorem 1.7. �

In later Chapters we will sharpen and generalise all these methods and
results.
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